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Abstract 
 We compare the performance of two methods of digital filtering to detect a 
radioactive source moving past a gamma-ray sensor.  The first method is the box-car 
filter, which is a standard method used in the detection of a moving radioactive source.  
The second method is the matched filter, which takes into account the variation in the 
number of photons absorbed in a gamma-ray sensor as a source moves past the sensor.  
We optimize both methods to detect a source moving at 5, 10, 15 and 20 mph, and the 
receiver-operator characteristics of the two techniques are plotted for comparison.  The 
improvement of the matched filter over the box car filter is 27% at 5 mph and 22% at 10 
mph for a 90% probability of detection and an average hours between false alarms equal 
to 10. 
 
Introduction 

The process of detecting of a radioactive source moving past a radiation sensor is 
a problem that is well suited for the use of digital signal extraction techniques.  Examples 
of sources we are interested in detecting include the movement of a radiological dispersal 
device and the illicit movement of industrial radioactive sources. The process of detecting 
a moving radioactive source is composed of four parts: measurement, detection, 
classification and estimation.  The measurement component of the radiation detection 
process is accomplished with the use of a radiation sensor.  The sensor, which includes an 
absorbing material and electronics, measures the properties of the gamma-radiation, i.e. 
the energy of the radiation, time of arrival or whatever property the sensor measures.  The 
second step in the radiation detection process is the analysis of the measured radiation 
properties to make a decision that a radioactive source did or did not move past the 
radiation sensor.  This second step is called detection.  The third step is classification, 
which is the determination of the taxonomy of the source.  The taxonomy can be broken 
down into the type of radiation, the isotope, the shielding, etc.  The final step in the 
radiation detection process is called estimation.  In this step, an algorithm uses the 
information from the classification step to estimate the properties of the material present, 
including the mass or age of the material.  In this paper we focus our attention on the 
detection part of the radiation detection process. 

Several digital signal extraction algorithms have been used for the extraction of 
signal from a gamma-ray sensor output of a radiation detection system using a time-
binned method of data acquisition.  In this standard method of data acquisition, the 
aggregate properties of photons are measured since the acquisition interval is long 
compared to the inter-arrival time of photons.  Algorithms have been written that do a 
comparison of the most recently acquired data to the data acquired previously.  An 
example of this type of algorithm is the Single Interval Test (SIT).  Other algorithms use 
filtering to reduce the variance of the signal before the comparison between the most 
recently acquired data and the previously acquired data is performed.  Examples of these 



 

filtering techniques include: an exponential smoothing filter,1  a moving average filter,2 
an S-fold scaler,3 a stepwise monitor,4 and the sequential probability ratio test (SPRT).4

In a paper by Fehlau5, the performance of the exponential smoothing filter, the 
moving average filter and SPRT was measured.  The performance of these filters was 
shown to be equal for the case that each filter was optimized for the particular detection 
problem.  In the Fehlau paper, a source was moved past the radiation detection system at 
a know velocity; therefore, each algorithm could be optimized for the particular detection 
problem.  A more generic problem would be the detection of an unknown source at an 
unknown velocity.  The addition of a velocity sensor would then allow the adaptive 
filtering of data so that the detection system would be optimized for a source moving past 
the detection system at any velocity.   To implement the velocity information in the 
detection algorithm would require both an adaptive method for time-binning data and an 
adaptive algorithm for the detection of the radioactive source. 

For the filters used previously for the detection of a moving radioactive source, a 
limited amount of information about the signal was used for the optimization of the 
detection algorithm.  For example, the approximate time the source was close enough to 
the detection system for the radiation from the source to be absorbed in the sensor was 
used to set the width of the moving-average filter or box-car filter.  Also, the acquisition 
time width was varied to maximize the probability of detection; however, this 
optimization method made the assumption that the source strength was: zero before the 
source moved near the sensor;  constant while the source was in front of the sensor; and 
zero after the source moved away from the sensor.  A more realistic approach would 
assume that the signal increases as the source moves towards the radiation sensor and 
then decreases as the source moves away from the sensor.  In this paper, we examine the 
benefit of using the variation in the number of photons absorbed in the gamma-ray sensor 
as a source moves past the sensor, which is called a physics-based model or a matched 
filter.  We determine the benefit of the use of a matched filter by doing a comparison 
between the matched filter and the box-car. 
 
Review of Statistical Decision Methods 

The problem of detecting a radioactive source moving past a radiation sensor is a 
general problem in radiation detection.  This detection problem is similar to the detection 
of a weak signal in noise, where the signal is the radiation captured from the source and 
the noise is the background radiation.  Here we are being careful to refer to the hardware 
(absorbing material and electronics) as a sensor.  We reserve the term “detector” for the 
algorithm used to determine if a source has moved past the radiation sensor.  This 
detection problem fits well into the simple hypothesis-testing category of statistical 
decision theory, where the probability density functions (PDFs) of both the signal 
(source) and noise (background) are well known. 

There are primarily two types of detectors that can be used for this type of 
detection problem: the Neyman-Pearson (NP) and the Bayesian methods.6-7  For the NP 
method, no prior knowledge is used to determine weather a detection has occurred, 
whereas in the Bayesian method, prior knowledge of the probability of occurrence of the 
various hypotheses is used.  For the Bayesian method, we can minimize the probability of 
making an incorrect decision, where an incorrect decision is either deciding a source was 
present when there was no source, or deciding a source was not present when there was a 



 

source present.  In the detection of a source moving past a sensor, we do not know 
beforehand what the probability of a source being present is; therefore, in our detection 
problem we choose the NP method for our detector. 

The NP detector is the detector that maximizes the probability of detection for a 
given probability of false alarm.  To use this method, it is required that the PDFs of both 
the signal and noise are known.  For our detection system, there are two hypotheses: 
hypothesis 1, or , that no source is present; and hypothesis 2, or , that a source is 
present.  For the NP test, the ratio of the probabilities of these two hypotheses is 
compared to a threshold.  Each hypothesis is dependent on a set of data; therefore, we 
write:
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where })(:{ γ>xLx vv  is the set of values of xv  for which γ>)(xL v , and  is the false 
alarm probability that is determined to be acceptable to the detection problem. Once the 
threshold is determined using (1), then the probability of detection can be found using: 
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As an example of a detection problem, we take the simple case of measuring the 
number of counts from a radiation sensor for a period of time t∆ .  We want to decide if 
the measured number of counts is more likely to come from source 2, with expected 
number of counts , or from source 1, with expected number of counts .  The NP 
likelihood ratio is 
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Since  and  are known constants, we can move them to the right side of the 
equation using the natural log function, then we find 
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`)/ln(/))((ln 1212 γγ =−+> AAAAx .  The value on the left is a function of the 
measured data and is called the test function, xxT =)(v .  Note that the left side of the 
equation contains no unknown parameters.  The right side of the equation is the modified 
threshold, which is found by 
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and the probability of detection is 
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For this example, we compare each measurement of the number of counts for a period of 
time  to t∆ `γ .  If the number of counts is greater than `γ , then hypothesis 2, source 2, is 
declared. 



 

For many detection situations, we are able to make many measurements of the 
same parameter in order to improve the detection of a signal.  As an example, let’s take 
the simple case of measuring the number of counts from a radiation sensor for a period of 
time , then we repeat the measurement so that we take the data  times.  We want to 
decide if the measured number of counts for the series of measurements is more likely to 
come from source 2, with expected number of counts , or from source 1, with 
expected number of counts .  The NP likelihood ratio test for this example is 
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After some simplification, (5) becomes 
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The test function for this case, >=< xxT )( v , is the average value of the data.  This is the 
optimal test statistic for this case.  The right side of the equation is the modified 
threshold, which is found by 
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where *xv  is the set of beginning points for the summations in (7), and the probability of 
detection is 
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For this example, we compare the average number of counts in time  to t∆ `γ .  If the 
average number of counts is greater than `γ , then hypothesis 2, source 2, is declared. 
 
Optimal Test Function 

Now we want to derive the case of a deterministic signal, which corresponds to a 
source moving past the radiation sensor.  For the deterministic signal, we know all the 
parameters of the signal, i.e. velocity, time of pass by, strength of source, etc.  For 
hypothesis 1, that no source is present, the expected number of counts per time  is .  
For hypothesis 2, we expect that the number of counts per time bin will be , 
where  is the contribution of the source at data point n.  The NP likelihood ratio is 
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For the case that  for all , (9) reduces to (5).  After some algebra, we can 
write the test statistic for this case as 
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Each of the measured data points, , is multiplied by a weighting function, 
, that depends on the expected strength of the source and the background.  

All parameters of  must be known in order to use (10) as a test statistic, .  If there are 
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unknown parameters, than a different approach must be used for the detection problem.  
An example of a possible method is the Generalized Likelihood Ratio Test.6-7  The test 
statistic given as equation (10), is the optimal test statistic for the signal  and the 
Poisson PDF of both the signal and the noise. 
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Modeling the Radiation Source for Signal Processing 

We want to be able to determine the values of  that will be put into the test 
statistic (10).  For the case of a point source moving at velocity, 

][ns
ν , past a radiation sensor 

at a distance  from the face of the sensor, we expect that the number of counts in the 
sensor for a time  is 
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where  is the number of counts due to background, 1A σd  is the integration over the 
surface of the sensor,  is the expected number of counts in 3A π4  during time ,  is 
the initial position of the source, and 

t∆ 0x
1...,1,0 −= Nn .  We have assumed that the source 

moves parallel to the face of the sensor and only in the x)  direction.  Also, we have 
assumed that only the front face of the sensor collects photons, and we assume that the 
solid angle is the only variable in the reduction of the number of photons entering the 
sensor.  Hence, we ignore shielding near the detector and the loss of photons due to air 
attenuation. 

We now need to determine the value of .  There are two extremes for the case 
of a source passing by a detector.  The first is that the source is directly in front of the 
detector at the midpoint of the integration for .  This will maximize the number of 
counts possible in any time bin.  The second case is if the source is directly in front of the 
detector at either end of the integration for .  This second case will result in the peak 
rate from the source being divided between two time bins and is a worst case since the 
maximum number of counts in any bin will be less than in the first case.  In reality, the 
situation will be evenly distributed between these two cases. 
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In order to implement the worst case, we need the total number of data points, , 
to be even.  For the best case, the total number of data points will be odd.  Independent of 
the two methods, the initial position of the source is  

N

2/0 tNx ∆−= ν .  Therefore, we have 
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For the case that the dimensions of the detector are small compared to the closest pass by 
distance of the source, we can simplify this to 
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where Σ  is the area of the detector.  It is more convenient to state the expected number of 
photons that will be absorbed in the detector than to state the expected number of photons 
that are emitted into π4 ; therefore, we write , and   2
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where  is the expected number of photons from the source that are absorbed in the 
detector in the time  when the source is stationary and directly in front of the sensor. 
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Box-Car Filter 

The box-car filter is an averaging technique that reduces the variance in the 
number of counts per time bin by weighting each point in the average equally.  To apply 
the box-car filter to a data set of  points, each point in the data set is averaged with the 

 nearest neighbors, where 
N

1−N N  is an odd number greater than or equal to 3.  Then 

, where  is the filtered data and  is the unfiltered data.  This 

weighting of the data is the test statistic shown in (6). 
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Matched Filter 

The matched filter is similar to the box-car filter in that each data point is 
averaged with a set of nearest neighbors; however, each data point is multiplied by the 

expected weight of each time bin.  Then .  In the box-car filter 

 for all n .  The weighting of the data for the matched filter is , 
where  is given by (14). 
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Simulation 
 We are now ready to calculate the difference between the box-car filter and the 
matched filter.  For the simulation of a source moving past a radiation sensor, we assume 
a background count rate of 100 photons/second and a source count rate of 35 
counts/second.  The source moves past the sensor at 10 mph, and the closest approach of 
the source to the face of the sensor is 10 feet.  The data acquisition rate is ∆t = 0.6 
seconds, and the total number of bins in each filter = 3.  With these parameters, we 
calculate the probability of false alarm and probability of detection for both filters.  These 
values are plotted in Figure 1. 

We can state that the matched filter performs better than the box-car filter since 
the probability of detection of the source is higher for the matched filter than the box-car 
filter for all values of the probability of false alarm; however, for this simulation, neither 
filter has been optimized for the detection situation proposed.  In order to optimize each 
filter for this detection problem, a Monte Carlo simulation was used to vary the number 
of bins and the acquisition time per bin for each filter to maximize the probability of 
detection.  A Monte Carlo simulation was used instead of calculating the probability of 
detection and probability of false alarm as described in the statistical decision theory 
section due to the long time required to calculate each algorithm.  For the detection 
problem in the previous paragraph, the optimized parameters for both filters are shown in 
Table 1.  In order to optimize each filter, a simulated source moved past the sensor, and 
many parallel filters were used to detect the source.  For both the box-car filter and the 



 

matched filter, the acquisition time, ∆t, was allowed to vary from 0.05 to 10 seconds, and 
the filter width was allowed to vary from 3 ∆t to 10 seconds. 

 

 
Figure 1:  Probability of Detection versus Probability of False Alarm for both the Box-Car Filter and 
Matched Filter. 
 
Table 1:  Optimized parameters for the Box-Car and Matched Filters for 10 mph. 

Filter ∆t (seconds) Filter Width (seconds) 
Box- Car 0.6 1.8 
Matched 0.05 1.65 

   
The optimized filter width of both the box-car and matched filters is 

approximately the same, as shown in Table 1.  This similarity in the filter width is due to 
the same length of time that the radiation sensor absorbs photons from the source for each 
filter.  A longer filter window would decrease the signal (source) to noise (background) 
ratio by increasing the amount of noise measured.  A shorter filter window would 
decrease the signal to noise ratio by decreasing the amount of signal measured.  There is, 
however, a difference in the data acquisition time for the two filters.  For the box-car 
filter, there is no added information to be used if the data acquisition rate is increased 
from the minimum number of data bins.  After the acquisition of the data, all the data 
bins are averaged together and any information that is inherent in the data from a faster 
data acquisition system is lost.  For the matched filter, however, the information that is 
inherent in the data from a faster data acquisition system is used since the matched filter 
depends on the signal shape. 

It should be noted that for the matched filter, the number of data bins is 33.  This 
large number of data bins creates a problem with doing calculations with the procedure 
from the statistical decision theory section due the constraints on processing power of a 
computer.  There are several other problems with the statistical decision theory procedure 
for calculating the probability of false alarm and detection, including: it does not take into 
account the variation in the calculation of the background due to the finite length of time 
the background is measured in a real radiation sensor; and it does not take into account 
the variation in the relative start of a time bin to the time of the peak radiation count rate 
during a pass by of the source, which should be random and uniform.  Due to these three 
problems, we choose to do calculations of the probabilities of detection and false alarm 



 

using a Monte Carlo method; however, it should be noted that the section on statistical 
decision theory is still useful since it allowed us to determine the optimal test statistic for 
the detection problem of a radioactive source moving past a radiation sensor.  The 
optimal test statistic is the matched filter. 
 A Monte Carlo simulation was used instead of calculating the probability of 
detection and probability of false alarm using the statistical decision theory.  A source 
was simulated moving past the sensor at 5, 10, 15 and 20 mph, and for a closest approach 
of 10 feet.  The background count rate was 500 counts/second and the source count rate 
was 95 (5mph), 135 (10mph), 155 (15mph) and 180 (20mph) counts/second.  For both 
the box-car filter and the matched filter, the acquisition time was varied from 0.05 to 10 
seconds in steps of 0.05 seconds, and the filter width was allowed to vary from 3 ∆t to 10 
seconds in steps of 2 ∆t.  Only the acquisition time and filter width that maximized the 
probability of detection was used in the final simulation.  The background acquisition 
time was 60 seconds, and the start position of the source was varied so that source was 
directly in front of the detector between the midpoint of the integration for  and the 
end of the integration for . 
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 The information in Figure 1 is not the ideal way to compare the performance of 
each detection algorithm due to the difference in the data acquisition time for each 
detection algorithm.  Also, we are not only interested in stating the probability of false 
alarm, we are also interested in the absolute comparison of the detection algorithms.  
Instead of plotting the probability of detection versus the false alarm probability, we 
choose to plot the probability of detection versus the average hours between false alarms, 
as shown in Figure 2 for the box-car filter and a source moving past the sensor at 10 and 
20 mph.  Also shown in Figure 2 are error bars for the probability of detection and error 
bars for the average hours between false alarms.  The errors bars for the probability of 
detection and the error bars for small values of the average hours between false alarms 
are too small to be seen on this graph.  The error bars for the probability of detection 
depend on the number of times the source is simulated moving past the sensor, and the 
error bars for the average hours between false alarms depends on the total length of time 
the simulations are run. 
 

 
Figure 2:  Probability of Detection versus Average Hours Between False Alarms for the Box-Car Filter at 
10 and 20 mph. 
 



 

For the data shown in Figure 2, the probability of detection decreases as the 
average hours between false alarms increases.  This decrease in detection probability is 
due to the decrease in the sensitivity of the detection algorithm as the detection algorithm 
is made less prone to false alarms.  Also of interest for this simulation is the absolute 
source strength that the detection algorithm will detect for the scenario described above.  
Shown in Figure 3 is the probability of detection versus source count rate for a source 
moving past a radiation detection system at 10 and 20 mph and using a box-car filter.  
The value of the source count rate is the number of photons per second that would be 
absorbed in the sensor if a radiation source was directly in front of the sensor and not 
moving.  In this simulation, a value of 10 hours between false alarms was used.  For 
small values of source count rate, the box-car filter does not detect the source at either 
velocity.  At high values of source count rate, the box-car filter is able to detect the 
source at both velocities.  The transition from a low probability of detection to a high 
probability of detection occurs at a smaller value of source count rate for the lower 
velocity due to the longer time the source spends in front of the detection system. 

 

 
Figure 3:  Probability of Detection versus Source Count Rate for the Box-Car Filter at 10 and 20 mph. 
 
 We now do a direct comparison between the box-car filter and the matched filter.  
Shown in Figures 4 and 5 are the probability of detection for both filters as a function of 
the average hours between false alarms at 5 and 10 mph.  The matched filter performs 
better than the box-car filter since the probability of detection for the matched filter is 
higher for the matched filter than the box-car filter for all average hours between false 
alarms.  The data for the matched filter does not extend out to large values of the average 
hours between false alarms due to the longer processing time of the matched filter.  This 
also accounts for the larger error bars on the matched filter than the box-car filter for the 
average hours between false alarms. 
 A further comparison between the matched filter and box-car filter is shown in 
Figure 6.  This comparison of the probability of detection versus source count rate for 
both filters is processed for an average hours between false alarms of 10.  From Figure 4 
and 5, it is evident that the performance difference between the two filters would be 
larger at a larger value of the average hours between false alarms; however, the error bars 
for the average hours between false alarms also becomes larger.  The improvement of the 
matched filter over the box car filter, shown in Table 2, is 27% (22%) at 5 (10) mph for a 
90% probability of detection, and the shape of the curve is different for the matched filter 
than the box-car filter.  The matched filter has a steeper transition from a low probability 



 

of detection to a high probability of detection, which is indicative of a better detection 
algorithm. 
 

 
Figure 4:  Probability of Detection versus Average Hours Between False Alarm for both the Box-Car and 
Matched Filters at 5 mph. 
 

 
Figure 5:  Probability of Detection versus Average Hours Between False Alarms for both the Box-Car and 
Matched Filters at 10 mph. 
 

 
 

Figure 6:  Probability of Detection versus Source Count Rate for both the Box-Car and Matched Filters at 5 
and 10 mph. 
 
 



 

Table 2:  Performance difference between the Box-Car filter and matched filter. 
Filter Source Rate for 90% Prob. 

of Detection at 5 mph 
Source Rate for 90% Prob. 

of Detection at 10 mph 
Box-Car 100 148 
Matched 73 116 
 
Conclusion 

We compared the use of a matched filter to a box-car filter to detect a radioactive 
source moving past a radiation detection system.  The matched filter takes into account 
the signal shape as the radioactive source moves past the radiation detection system.  The 
improvement of the matched filter over the box car filter was 27% at 5 mph and 22% at 
10 mph for a 90% probability of detection and an average hours between false alarms 
equal to 10. 
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